On the L^p Space of Observables on Product MV Algebras †

Beloslav Riečan¹

Received December 8, 1999

A weakly σ -distributive product MV algebra M is considered as a base of a quantum structure model. A state is a morphism from M to the unit interval, and an observable is a morphism from the system of all Borel sets to M. It is proved that the subspace L^p of the space of observables is a complete pseudometric space. This result generalizes the previous result; the proof is new.

1. INTRODUCTION

There is given an MV algebra $(M, \oplus, \odot, *, 0, 1)$, where \oplus and \odot are binary operations, * is a unary operation, and 0 and 1 are fixed elements such that some axioms are satisfied [1, 2, 7]. By the Mundici representation theorem [4] there exists a commutative l-group G such that $M \simeq \langle 0, u \rangle \subset G$, where 0 is the neutral element of G, and G is a strong unit in G,

$$a \oplus b = (a+b) \wedge u$$
$$a \odot b = (a+b-u) \vee 0$$
$$a^* = u - a$$

An MV algebra M is called a product MV algebra [6] if there is given a binary operation \cdot on M satisfying the following conditions:

- (i) $u \cdot u = u$
- (ii) The operation · is commutative and associative.
- (iii) If $a + b \le u$, then $c \cdot (a + b) = c \cdot a + c \cdot b$ for any $x \in M$.

[†]This paper is dedicated to the memory of Prof. G. T. Rüttimann.

¹Mathematical Institute, Slovak Academy of Sciences, SK-814 73 Bratislava, Slovakia, and Department of Mathematics, Faculty of Natural Sciences, Matej Bel University, SK-974 01 Banská Bystrica, Slovakia; e-mail: riecan@mau.savba.sk.

(iv) If $a_n > 0$, $b_n > 0$, then $a_n \cdot b_n > 0$.

A state is a mapping $m: M \to \langle 0, 1 \rangle$ satisfying the following conditions:

- (i) m(u) = 1
- (ii) If a = b + c, then m(a) = m(b) + m(c).
- (iii) If $a_n \nearrow a$, then $m(a_n) \nearrow m(a)$.

An observable is a mapping $x: \mathcal{B}(R) \to M$ ($\mathcal{B}(R)$ is the σ -algebra of Borel subsets of R) such that the following properties are satisfied:

- (i) x(R) = u.
- (ii) If $A \cap B = \emptyset$, then $x (A \cup B) = x(A) + (B)$.
- (iii) If $A_n \nearrow A$, then $x(A_n) \nearrow x(A)$.

If $m: M \to \langle 0, 1 \rangle$ is a state and $x: \mathcal{B}(R) \to M$ is an observable, then $m_x = m \circ x: \mathcal{B}(R) \to \langle 0, 1 \rangle$ is a probability measure.

An observable $x: \mathcal{B}(R) \to M$ belongs to L^p if there exists

$$\int_{P} |t|^{p} dm_{x}(t)$$

The notion of an observable is a generalization of the notion of a random variable ξ : $(\Omega, \mathcal{S}, P) \to (R, \mathcal{B}(R), P_{\xi})$, since

$$\int_{\Omega} |\xi|^p dP = \int_{R} |t|^p dP_{\xi}(t)$$

In the L^p space of random variables the distance is defined by the formula

$$\rho_p(\xi, \, \eta)^p = \int_{\Omega} |\xi - \eta|^p \, dP = \iint_{\mathbb{R}^2} |u - v|^p \, dP_T(u, \, v)$$

where $T = (\xi, \eta)$: $\Omega \to R^2$, P_T : $\Re(R^2) \to \langle 0, 1 \rangle$, $P_T(A) = P(T^{-1}(A))$. Instead of a random variable ξ , we consider an observable, and instead of a random vector T we consider a so-called joint observable. The joint observable of observables x, y: $\Re(R) \to M$ is a mapping h: $\Re(R^2) \to M$ satisfying the following conditions:

- (i) $h(R^2) = u$.
- (ii) If $A \cap B = \emptyset$, then $h(A \cup B) = h(A) + h(B)$.
- (iii) If $A_n \nearrow A$, then $h(A_n) \nearrow h(A)$.
- (iv) $h(C \times D) = x(C) \cdot y(D)$ for any $C, D \in \mathcal{B}(R)$.

Now it is natural to define the distance of two observables $x, y \in L^p$ by the formula

$$\rho(x, y) = \begin{cases} \left(\iint_{\mathbb{R}^2} |u - v|^p \, dm \circ h(u, v) \right)^{1/p} & \text{if } x \neq y \\ 0 & \text{if } x = y \end{cases}$$

Here h is the joint observable of x, y. Of course, we have to prove that the joint observable exists and the function $(u, v) \mapsto |u - v|^p$ is integrable with respect to $m \circ h$. It works in so-called weakly σ -distributive MV algebras. A σ -complete MV algebra is weakly σ -distributive if for any bounded double sequence (a_{ij}) of elements of M such that $a_{ij} \downarrow 0$ $(j \rightarrow \infty, i = 1, 2, ...)$ we have

$$\bigwedge_{\varphi:N\to N}\bigvee_{i=1}^{\infty}a_{i\varphi(i)}=0$$

Lemma 1. Let M be weakly σ-distributive product MV algebra. Then to every observables x, y: $\mathcal{B}(R) \to M$ there exists their joint observable.

Lemma 2. If x, y are observables from L^p , then $g:(u,v)\mapsto |u-v|^p$ is integrable with respect to $m\circ h$.

Proof. Consider the probability space $(R^2, \Re(R^2), m \circ h)$ and random variables ξ , η defined on the space by the formulas

$$\xi(u, v) = u, \quad \eta(u, v) = v$$

Evidently

$$P_{\xi}(A) = P(\xi^{-1}(A)) = m(h \ (A \times R))$$

= $m(x(A)y(R)) = m_x(A)$

hence

$$\int_{\mathbb{R}^2} |\xi|^p dP = \int_{\mathbb{R}} |t|^p dP_{\xi}(t) = \int_{\mathbb{R}} |t|^p dm_{x}(t)$$

We have obtained that $\xi \in L^p$. Similarly $\eta \in L^p$. Therefore $\xi - \eta \in L^p$, hence

$$\iint_{R^2} |u - v|^p \, dm \circ h(u, v) = \iint_{R^2} |\xi - \eta|^p \, dP < \infty \quad \blacksquare$$

Recall that in ref. 5 the distance $\rho(x, y)$ was defined by the formula

$$\rho(x, y) = \left(\int_{R} |t|^{p} dm_{x-y}(t)\right)^{1/p}$$

where x - y is the difference of observables. It can be defined by the formula

$$x - y = h \circ g^{-1}$$

where h is the joint observable of the observables x, y and g: $R^2 \to R$ is defined by g(u, v) = u - v. Of course,

$$\int_{R} |t|^{p} dm_{x-y}(t) = \int_{R} |t|^{p} dm \circ h \circ g^{-1}(t)$$

$$= \iint_{R^{2}} |g|^{p} dm \circ h = \iint_{R^{2}} |u - v|^{p} dm \circ h(u, v)$$

2. COMPLETENESS OF L^P

Theorem. Let M be a weakly σ -distributive product MV algebra. Then (L^p, ρ) is a complete pseudometric space.

Proof. To prove the symmetry, take $\varphi: \mathbb{R}^2 \to \mathbb{R}^2$, $\varphi(u, v) = (v, u)$. Then

$$h \circ \varphi^{-1}(A \times B) = h(B \times A) = x(B)y(A)$$

hence $h_1 = h \circ \varphi^{-1}$ is the joint observable of observables y, x. If we put $g(u, v) = |u - v|^p$, then

$$\rho(x, y)^p = \int \int_{\mathbb{R}^2} g \, dm \circ h = \int \int_{\mathbb{R}^2} g \circ \varphi \, dm \circ h \circ \varphi^{-1}$$
$$= \int \int_{\mathbb{R}^2} g \, dm \circ h_1 = \rho(y, x)^p$$

To prove the triangle inequality, let us mention first

$$\rho(x, y)^{p} = \int \int_{\mathbb{R}^{2}} |u - v|^{p} dm \circ h_{xy}(u, v) = \int \int \int_{\mathbb{R}^{3}} |u - v|^{p} dm \circ h(u, v, w)$$

where $h: \mathcal{B}(R^3) \to M$ is such a morphism that $h(A \times B \times C) = x(A)y(B)z(C)$. Similarly,

$$\rho(x, z)^p = \int \int \int_{\mathbb{R}^3} |u - w|^p dm \circ h(u, v, w)$$

$$\rho(y,z)^p = \int \int \int_{\mathbb{R}^3} |v-w|^p \, dm \circ h(u,v,w)$$

Consider $(R^3, \Re(R^3), m \circ h)$ and put $\xi(u, v, w) = u, \eta(u, v, w) = v, \zeta(u, v, w) = w$. We obtain

$$\rho(x, y)^p = \int_{R^3} |\xi - \eta|^p dP$$

$$\rho(x, z)^p = \int_{R^3} |\xi - \zeta|^p dP$$

$$\rho(u, x)^p = \int_{R^3} |\eta - \zeta|^p dP$$

Using the triangle inequality in the space $L^p(R^3, \Re(R^3)P)$, we obtain

$$\rho(x, y) = \left(\int_{R^3} |\xi - \eta|^p dP \right)^{1/p}$$

$$\leq \left(\int_{R^3} |\xi - \zeta|^p dP \right)^{1/p} + \left(\int_{R^3} |\zeta - \eta|^p dP \right)^{1/p} = \rho(x, z) + \rho(z, y)$$

Now, let $(x_n)_n$ be a Cauchy sequence in L^p , i.e. $\lim_{n,k\to\infty} \rho(x_n, x_k) = 0$. We shall work with the space $(R^N, \sigma(\mathcal{C}), P)$, where $\sigma(\mathcal{C})$ is the σ -algebra generated by cylinders and P is the measure induced by the consistent system of measures

$$P_n = m \circ h_n$$
: $\Re(R^n) \to \langle 0, 1 \rangle$

where h_n is the joint observable of x_1, \ldots, x_n , hence

$$P_n(A_1 \times \cdots \times A_n) = m(x_1(A_1) \cdot \cdots \cdot x_n(A_n))$$

Define further $\xi_n: \mathbb{R}^N \to \mathbb{R}$ by the formula $\xi_n((u_i)_i) = u_n$. Then ξ_n is a random variable and

$$P_{\xi_n}(A) = P(\xi_n^{-1}(A)) = m \circ h_n(R \times \dots \times R \times A)$$
$$= m(x_1(R) \dots x_n(A)) = m_{x_n}(A)$$

hence

$$P_{\xi_n} = m_{x_n}$$

Moreover,

$$\rho_p(\xi_n, \, \xi_k)^p = \int_{\mathbb{R}^N} |\xi_n - \xi_k|^p \, dP = \int_{\mathbb{R}^2} |u - v|^p \, dm \circ h(u, \, v)$$
$$= \rho(x_n, \, x_k)^p$$

hence $(\xi_n)_n$ is a Cauchy sequence in the space $L^p(\mathbb{R}^N, \sigma(\varphi), P)$. Since this space is complete, there exists $\xi \in L^p$ such that

$$\lim_{n\to\infty} \rho_p(\xi_n,\,\xi) = 0$$

Then there exists a subsequence $(\xi_{n_i})_i$ such that *P*-a.e. [3]

$$\xi_{n_i} \to \xi$$

Denote $\eta_i = \xi_{n_i}$, $y_i = x_{n_i}$, and put

$$\overline{x}((-\infty, u)) = \bigwedge_{p=1}^{\infty} \bigvee_{k=1}^{\infty} \bigwedge_{n=k}^{\infty} y_n \left(\left(-\infty, u - \frac{1}{p} \right) \right)$$

$$\underline{x}((-\infty, u)) = \bigwedge_{p=1}^{\infty} \bigwedge_{k=1}^{\infty} \bigvee_{n=k}^{\infty} y_n \left(\left(-\infty, u - \frac{1}{p} \right) \right)$$

Let h_{n_j} be the joint observable of observables y_n , y_j , hence $h_{n_j}((-\infty, u) \times (-\infty, v)) = y_n((-\infty, u))y_j((-\infty, v))$. Let h_{k+i} be the joint observable of y_1 , ..., y_{k+i} . Then for i > j - k we have

$$m \left(\bigwedge_{n=k}^{k+i} h_{nj}((-\infty, u) \times (-\infty, v)) \right)$$

$$= m \left(\bigwedge_{n=k}^{k+i} h_{k+i}(\{(u_1, \dots, u_{k+i}); u_n < u, u_j < v\}) \right)$$

$$\geq m \left(h_{k+i} \left(\bigcap_{n=k}^{k+i} \{(u_1, \dots, u_{k+i}); u_n < u, u_j < v\} \right) \right)$$

$$= P \left(\bigcap_{n=k}^{k+i} \eta_n^{-1}((-\infty, u)) \cap \eta_j^{-1}((-\infty, v)) \right)$$

Therefore

$$m(\overline{x}((-\infty, u))y_{j}((-\infty, v)))$$

$$= \lim_{p \to \infty} \lim_{k \to \infty} \lim_{i \to \infty} m \left(\bigwedge_{n=k}^{k+i} y_{n}((-\infty, u))y_{j}((-\infty, v)) \right)$$

$$\geq \lim_{p \to \infty} \lim_{k \to \infty} \lim_{i \to \infty} P \left(\bigcap_{n=k}^{k+i} \eta_{n}^{-1}((-\infty, u))\eta_{j}^{-1}((-\infty, v)) \right)$$

$$= P(\xi^{-1}((-\infty, u)) \cap \eta_{j}^{-1}((-\infty, v)))$$

Similarly,

$$m(x((-\infty, u))y_j((-\infty, v))) \le P(\xi^{-1}((-\infty, u)) \cap \eta_j^{-1}((-\infty, v)))$$

Since $\overline{x}((-\infty, u)) \le x((-\infty, u))$, we obtain

$$m(\overline{x}((-\infty, u))y_j((-\infty, v))) = m(x((-\infty, u))y_j((-\infty, v)))$$
$$= P(\xi^{-1}((-\infty, u)) \cap \eta_i^{-1}((-\infty, v)))$$

By ref. 7, Theorem 9.8.4, we conclude that there exists an observable y: $\mathcal{B}(R) \to M$ such that

$$m(y((-\infty, u))y_i((-\infty, v))) = P(\eta^{-1}((-\infty, u)) \cap \eta_i^{-1}((-\infty, u)))$$

Moreover,

$$\int_{R} |t|^{p} dm_{y}(t) = \int_{R} |t|^{p} dP_{\xi}(t) = \int_{R^{N}} |\xi|^{p} dP < \infty$$

hence $y \in L^p$. Put

$$F(u, v) = P(\xi^{-1}((-\infty, u)) \cap \eta_j^{-1}((-\infty, v)))$$

$$F_n(u, v) = P(\eta_n^{-1}((-\infty, u)) \cap \eta_j^{-1}((-\infty, v)))$$

$$= m(y_n((-\infty, u))y_i((-\infty, v)))$$

Then [3]

$$F(u, v) = \lim_{n \to \infty} F_n(u, v)$$

Further

$$\rho(y, y_j)^p = \int \int_{\mathbb{R}^N} |u - v|^p dm \circ h(u, v)$$

where h is the joint distribution of y, y_i . It follows that

$$m(h((-\infty, u) \times (-\infty, v))) = m(y((-\infty, u))y_j((-\infty, v)))$$

= $P(\xi^{-1}((-\infty, u)) \cap \eta_j^{-1}((-\infty, v))) = F(u, v)$

Therefore

$$\rho(y, y_j)^p = \int \int_{R^2} |u - v|^p dm \circ h(u, v)$$

$$= \int \int_{R^2} |u - v|^p dF(u, v)$$

$$= \lim_{n \to \infty} \int \int_{R^2} |u - v|^p dF_n(u, v)$$

$$= \lim_{n \to \infty} \rho(y_n, y_j)^p$$

$$= \lim_{n\to\infty} \rho_p(\eta_n, \, \eta_j)^p = \rho_p(\xi, \, \xi_{n_j})^p$$

We have constructed an observable $y \in L^p$ and a subsequence $(x_{n_j})_j$ such that $x_{n_j} \to y$. Since $(x_n)_n$ is Cauchy, $(x_n)_n$ also converges to y.

ACKNOWLEDGMENTS

This research was supported by Grants VEGA 95/5305/471 and 2/5124/98.

REFERENCES

- Chang, C. C., Algebraic analysis of many valued logics, Trans. Am. Math. Soc. 88 (1958), 467–490.
- 2. Chovanec, F., States and observables on MV algebras, Tatra Mr. Math. Publ. 3 (1993), 55-64.
- 3. Kricheberg, K., Probability Theory, Addison-Wesley, Reading, Massachusetts, 1965.
- 4. Mundici, D., Interpretation of AFC*-algebras in Lukasiewicz sequential calculus, *J. Funct. Anal.* **65** (1986), 15–63.
- 5. Riečan, B., On the L^p space of observables, Fuzzy Sets Syst., to appear.
- 6. Riečan, B., On the product MV algebras, Tatra Mt. Math. Publ., 16 (1999), 143-149.
- 7. Riečan, B., and Neubrunn, T., Integral, Measure, and Ordering, Kluwer, Dordrecht, 1997.